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Removal of Drift From Frequency
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This article gives a method of estimating frequency drift rate and removing its effect
from Allan variance plots. When tried on a test of hydrogen masers, the method gives
consistent results, An error in the previous Allan variance computation algorithm is

corrected.

. Drift Removal—Before and After

Imagine a frequency standard whose only problem is a
steady frequency drift. Its phase error in radians has the form

@) = 2nf, (a + bt + %ctz) )]

where @, b, and ¢ are constants, and f, is the nominal
frequency of the oscillation. The drift rate of the relative
frequency error Af/f, = el fo) is ¢ per second. The
two-sample Allan deviation, the usual measure of Af/f,,, is
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for this simple case. (In this report, Allan deviation is the
square root of Allan variance.)

Now observe the behavior of three hydrogen masers, called
DSNI, DSN2, and DSN3, which were tested at the JPL
Interim Frequency Standard Test Facility for eight days at the
end of 1980. Figure 1, a rough rendering of the frequency

strip charts, shows Af/f, vs calendar date for the three pos-
sible pairs of masers beating against each other. The three
curves have different Af(f, scales. In particular, the scale of
the DSN2-DSN3 curve is expanded relative to the others
because it does not exhibit the drift that dominates the other
curves. The thickness of the DSN2-DSN3 curve is just a way
of showing the size of the rapid (3-minute average) fluctua-
tions of Af/f,,. It is a good bet that DSN1 was drifting by itself
at a rate about -6 X 10~1% per second, or -5 X 10~14 per
day.

Figure 2 shows what this drift does to the Allan deviation.
The usual oy('r) is given by the “gross” curves, which, for the
two pairs containing DSN1, become straight lines with slope
one for the larger 7. The dashed lines show the estimated drift
component, Eq. (2), where the estimate of the drift rate ¢ is
computed by a method explained below. The actual estimates
of c are

6.15 X 1071% /s DSN2-DSNI
~6.32 X 10719 /s DSN1-DSN3
-4.13 X 10721 /s DSN2-DSN3
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all of which have standard deviation 3.6 X 1072°, Evidently,
DSN2-DSN3 has negligible drift.

The “net” curves in Fig. 2 show what happens when the
estimated drift function (2mfy) (cr?/2) is subtracted (in
effect) from the phase data. The net Allan deviations, 0,,4(7),
for the DSNI pairs look like the gross Allan deviation of
DSN2-DSN3. All three curves have slope 0.77 for 7> 10%s.
The effects of the random phase fluctuations, formerly
masked by the drift, can now be seen.

Il. Method of Drift Estimation and Removal
A. Quantities to be Estimated

It is convenient to work with the function

x(t) = ()2 fo)

where ¢(¢) is the phase difference of the pair of oscillators
being tested. The underlying assumption is that x(r) is a
mean-continuous stochastic process whose second differences

AZx(f) = x(¢)- 2x(t - 1) +x(¢ - 21)

are stationary for each 7. A deterministic example is given by
Eq. (1), its second differences

A? (—1— ct2) = ¢7?
T

are constant. In fact, it is true in general that any such process
can be written

x(t) = 5ef +x,(0) 3)

where ¢ is a constant, and the second differences of x,(r) have
mean zero (Ref. 1). This decomposes the phase into a pure
frequency drift term plus random fluctuations. (The term
x,(7) might contain an a + bz component, which goes away
when second differences are taken. Anyhow, we do not care
about constant phase and frequency offsets.) Our goal is to
perform this decomposition on experimental phase data.

The usual Allan variance, called gross AV here, is defined
by

o(r) = ;1; E [82x() @
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and the net AV is defined by

1
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02,(1) =— E [Alx, ()] s)

Since the second differences of x,(f) have mean 0, Eq. (3)
gives

c=-Lp A2x(1) (6)
1'2 T

Po@) = G20 e ™

We want to estimate 0,,(7), ¢, and 0,4(7).

B. The Estimators
Let x(¢) be given for 0 <t < T. We shall need the first four
moments of the second differences. Define

rt+1

m() =3 (A2 xGn)’
j=2

The integer r, which depends on 1, is the available number of
second-difference samples. One can define it by saying that
(r + 1)7is the largest multiple of 7 that does not exceed 7.

The usual estimator of gross AV is the time average

() = ;1; m. (1) ®)

‘How shall we estimate ¢? Equation (6) suggests the unbiased
estimator

2w =L m, ) ©)
T

Because a second difference is the difference of first differ-
ences, the implied summation in Eq. (9) telescopes, leaving us
with

 [AxG+7) A x(r)
o(r, 1) =—T—,[ - ] (10)

T T

where 7’ =rr. The notation is expanded because Eq.(10) is
more general than Eq. (9), in that 7" does not need to be an




integer multiple of 7. The interpretation is that the average
drift rate equals average frequency near the end of the record,
minus average frequency near the beginning, divided by the
length of the record (actually, by 7').

We wish to select just one estimator of ¢ for the given
record length 7. To do this, we might minimize the variance of
Eq. (9) or Eq. (10) over 7, where 7' =T - 7 in Eq. (10). This
cannot be done in advance without knowing the spectrum
S.(f) of x(r). Since S,(f) determines Allan variance, we are
asking for the outcome of our measurements before we do
them. To escape this trap, we appeal to the past— a
measurement made by Sward (Ref. 2) on hydrogen masers. His
work gives the one-sided spectral density

h

SN = =t (flicker frequency modulation)
@m)*r?
hy
+ (flicker phase modulation)
@ny’f

where

h_, =35X107% A = 1.6X 10725 s

and the second term is cut off at f=10° Hz.

It turns out that the variance of &(r, 7") can be read from
formulas in Ref. 3, pp. 42-47, for different types of phase
noise, including flicker FM and PM. Using the Sward spectrum,
we find, for <15 s, that the flicker PM part of Var &(r, 7') is
dominant. For 7> 15s, the flicker FM part takes over.
Furthermore, as 7 increases beyond 15 s, the variance becomes
smaller than for any 7 < 15 s. Hence, we need only consider
the flicker FM contribution to Var &(r, 7'), which is

h
—% [¢+1)? m@E+)-22Inr+(@- 1) In (- 1)]

;
(11

Let us state the result of minimizing this.

Assume that the normalized phase error x(t) consists of
flicker FM plus a constant frequency drift term (ct?/2). Then
Fq. (10) gives a family of unbiased esimators of c. Let
T=7+1' be fixed. Then

894h_
min Varé(z, T~ 1) = —
T

(12)

The minimum is achieved forr = (T - 1)/ =5.29.

In other words, we should use a 7 that is about one-sixth of
the record length T. Notice that the variance is like 1/72
instead of 1/7. This happens because the second differences of
x(¢) have less power than white noise near zero frequency.

The minimum is broad enough to allow considerable
departures from it. Although Eq. (10) is simple, the details of
the data processing make it expedient to revert to the summed
form Eq. (9). Moments of the second differences are accumu-
lated only for a certain small set of 7, and the actual estimator
of cis

C =72r,)

where 7, is the largest available 7 such that r, =r(r,) is at
least 6. Of course, 7, + 7' is usually less than T. For the r-set
actually used, r,, falls between 6 and 16.

We can estimate Var C from Eq. (12) (or Eq. (11) if 7, is

‘not quite optimal) if we have a value for the flicker FM

constant /_, , which satisfies

2
-1~ T4 %o (13)

(Ref. 3). This leads to the next goal, the estimation of of,o('r).
In view of Eq. (7), one might use the estimate

S2(r) - % Cc?r?

The problem with this is that it can be negative. We prefer to
start from Eq. (5). Given the data x(¢) and the estimate C of ¢,
an estimate of the “net data™ x(r) is x(#) - (Ct?/2) (except
for a polynomial a + bt). Then, an estimate of A2x,(r) is
A2x(t) - Cr2. This leads to our estimator of choice,

r+1
1

— 3 [a%(n- orfl’

21°r j=2

Sg('r) =

(14)
= $2()- Cm, (1) + %7

for the net AV 0;2»0(7)'

Since Cr2 =m (r,), S3(r.) is just (1/ (273)) times the

- variance of the sequence of second r,-differences of x(t). One

can now estimate 4_, from Eq. (13) by using S§(r,) for 03.

129




For the largest useful T, corresponding to r=>5 or less, an
anomaly may appear. Either the estimated net AV or the
estimated drift contribution C?72 /2 can come out greater than
the estimated gross AV. This should not be alarming. If net
AV is greater than gross AV, the gross AV should still fall
within the error bar of the net AV, This error bar is the next
topic.

The net AV estimate S3(7) is the average of the numbers

= b A2y 212
u; = " [AZx(r) - Cr°]

A computation with Gaussian flicker FM shows that the
sampled process

[A2x G

is almost white from zero frequency to the Nyquist frequency,
even though the spectral density of A2x, vanishes at zero
frequency. Thus, it is reasonable to use the sample variance of
the u; for estimating the error in the mean. Our one-sigma
error estimate for S2(7) is 8, given by

1 r+1 2
2 _ . Q2
5" = r-Dr Z; [u}. So(l
=
(15)
- 1 _ 2, o P
= m [m4 4Dm, +4D m, (2Dm1 m2) ]

where D =Cr%, and the m; are the moments m(7) defined
above. Finally, an error bar for Sy(7) is [S3(r)~ 8]1/2 to
[S3(r) + 8}/2 . If & > S3(r), then the first number is replaced
by zero.

lIl. Correction of an Error

In the JPL frequency stability test setup, the phase data are
written on magnetic tape. Later, they are processed into Allan
variance by an offline computer program. The previous version
of this program contains an error. To explain it, fix a 7, and let

1 A2 AXx()
t) = =
€ T TV 2

VvZ 2l
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be a scaled version of the second difference of phase.
According to Eq. (8), the usual estimator of 0,,(7) is

‘ r+1 112
S(r) = [% > 52(#)] (16)
=
a discrete rms time average of &, just as
0, = [EEOI' = &0,

is the rms ensemble average, or L? norm, of the random
variable £(2).

The previous Allan variance program used

r+1

5,@ =3 l¢Gn) an
i=2

to estimate the Allan deviation. Equation (17) is an unbiased
estimator, not of 0,(7), but of

E @) = 11E@,

the LY norm of £(#). One can judge the size of this error by
assuming that £(#) is Gaussian with mean zero (no drift!), in
which case

@M, _ _l_fw 2% g = QI = 07979
Cove-Y

We compared the old values S,(r) and the new values S(7)
from another stability test run, which again measured three
oscillator pairs. Figure 3 shows the comparison for one pair, a
cesium standard and a hydrogen maser. For all three pairs, we
computed the average of the ratios §,(r)/S(7). A ratio was
included only if the standard deviation of S, (7) was less than 3
percent. The three averages, with error estimates, are

0.7992 £ 0.0019

0.7905 + 0.0008

0.7968 = 0.0015




At least for this purpose, the Gaussian hypothesis seems
justified. When drift is negligible, the old values for o,,(r) are
20 percent too low. This explains part of the difference
between the JPL system and the Hewlett-Packard HP5390A
frequency stability measurement system (Ref. 4), which does
its own Allan variance computation.

It was necessary to correct this error before a drift-removal
algorithm could successfully be installed in the JPL Allan
variance program. Use of the L? norm makes it possible to
remove the drift via Eq. (14) in one pass through the phase
data.

IV. Concluding Remarks

The drift removal method given above yields -consistent
results on the data from one frequency stability test run, in
that the Allan deviation curves of the three hydrogen maser
pairs look almost the same after the drift is removed by the
analysis program. Although the drift estimation method
assumes flicker FM, the actual Allan deviation plots do not
become level at the higher 7. We need more experience with
the method before we can judge its robustness with respect to
the flicker FM assumption. Perhaps one can find a method
that tajlors itself to the actual oscillator behavior. In the
meantime, the present method appears to give useful results.
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Fig. 1. A plot of pairwise Af/fg vs. time for a set of three hydragen
masers, called DSN1, DSN2, and DSN3. The Af/fy scales are all Fig. 2. Pairwise Allan deviation of three hydrogen masers, before
different and after removal of drift from the measurements:
(a) DSN2—-DSN1; (b) DSN1~DSN3; (c) DSN2—DSN3
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Fig. 3 Allan deviation of a cesium-hydrogen maser pair, as
computed by the old (incorrect) algorithm and the new (correct)
algorithm. The old results are 20 percent too low.
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